A Tensor Decomposition Based Multiway Structured Sparse SAR Imaging Algorithm with Kronecker Constraint

نویسندگان

  • Yu-Fei Gao
  • Xunchao Cong
  • Yue Yang
  • Qun Wan
  • Guan Gui
چکیده

Yu-Fei Gao 1, Xun-Chao Cong 1, Yue Yang 1, Qun Wan 1 and Guan Gui 2,* 1 School of Electronic Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu 611731, China; [email protected] (Y.-F.G.); [email protected] (X.-C.C.); [email protected] (Y.Y.); [email protected] (Q.W.) 2 College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, 66 Xinmofan Road, Nanjing 210003, China * Correspondence: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD

This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a...

متن کامل

Structured data-sparse approximation to high order tensors arising from the deterministic Boltzmann equation

We develop efficient data-sparse representations to a class of high order tensors via a block many-fold Kronecker product decomposition. Such a decomposition is based on low separation-rank approximations of the corresponding multivariate generating function. We combine the Sinc interpolation and a quadrature-based approximation with hierarchically organised block tensor-product formats. Differ...

متن کامل

A constructive arbitrary-degree Kronecker product decomposition of tensors

We propose the tensor Kronecker product singular value decomposition (TKPSVD) that decomposes a real k-way tensor A into a linear combination of tensor Kronecker products with an arbitrary number of d factors A = ∑R j=1 σj A (d) j ⊗ · · · ⊗ A (1) j . We generalize the matrix Kronecker product to tensors such that each factor A j in the TKPSVD is a k-way tensor. The algorithm relies on reshaping...

متن کامل

An Iterative Reweighted Method for Tucker Decomposition of Incomplete Multiway Tensors

We consider the problem of low-rank decomposition of incomplete multiway tensors. Since many real-world data lie on an intrinsically low dimensional subspace, tensor low-rank decomposition with missing entries has applications in many data analysis problems such as recommender systems and image inpainting. In this paper, we focus on Tucker decomposition which represents an N th-order tensor in ...

متن کامل

A higher-order LQ decomposition for separable covariance models

We develop a higher-order generalization of the LQ decomposition and show that this decomposition plays an important role in likelihood-based estimation and testing for separable, or Kronecker structured, covariance models, such as the multilinear normal model. This role is analogous to that of the LQ decomposition in likelihood inference for the multivariate normal model. Additionally, this hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Algorithms

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017